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Abstract – 
Machine learning (ML) is a purpose technology 
already starting to transform the global economy and 
has the potential to transform the construction 
industry with the use of data-driven solutions to 
improve the way projects are delivered. Unrealistic 
productivity predictions cause increased delivery cost 
and time. This study shows the application of 
supervised ML algorithms on a database including 
1,977 productivity measures that were used to train, 
test, and validate the approach. Deep neural network 
(DNN), k-nearest neighbours (KNN), support vector 
machine (SVM), logistic regression, and Bayesian 
networks are used for predicting productivity by 
using a subjective measure (compatibility of 
personality), together with external and site 
conditions and other workforce characteristics. A 
case study of a masonry project is discussed to analyse 
and predict task productivity. 
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1. Introduction

There are numerous factors that impact task productivity 
of construction crews such as external conditions, site 
conditions, and workers characteristics. The 
interrelationships between the factors and the factors’ 
effects need to be considered by site managers when 
planning work to better predict task productivity and 
determine which factors will have a negative impact, so 
that they can take actions such as identifying which 
workers will be part of a crew, determining optimal crew 
size, and allocating workers and crews to the proper 
tasks. Existing modeling approches have not considered 
a subjective and essential characteristic of the workforce 
(compatibilty of personality) and the interrelationships 
between workforce characteristics, site and external 
conditions to accurately predict task productivity of 
construction crews. Therefore, a model to better 

understand the interactions between the factors and their 
combined effects to better predict task productivity needs 
to be developed. Additionally, the developed models 
make predictions without considering various levels of 
productivity that are useful for planning future work and 
establishing acceptable levels of production. In this work, 
levels of productivity are classified in 3 classes (high, 
medium and low) and the class definition was based on 
the number of standard deviations from the empirical 
mean productivity.  

2. Machine learning in construction

Machine learning (ML) as a major area of interest within 
the field of artificial intelligence (AI) has been applied to 
construction and the built environment research for more 
than two decades [3], [5-7]. Supervised learning, 
including logistic regression, support vector machine 
(SVM), and random forest among others, are the most 
widely used type of ML algorithms in the construction 
field. Supervised learning is a ML method that learns a 
function that maps the input to output based on example 
input-output pairs and infers a function from labelled 
training data consisting of a set of training examples [10]. 
In most construction applications, supervised learning is 
used for data classification [8]. Unsupervised learning 
that focuses on data reduction and clustering problems is 
a method of machine learning. No pre-labelled training 
examples are given, and the input data is automatically 
classified or grouped [9-10]. Because in the construction 
industry the unlabelled data has many limitations, 
relatively speaking, the information that can be extracted 
is less than the labelled data, so unsupervised learning is 
less used in the construction industry than supervised 
learning. 

Numerous ML applications have been developed for 
the construction industry. Examples include supervised 
learning such as logistic regression [15], SVM [13,16], 
AdaBoost [17], Random Forest [13,18], Bayesian 
Network [19], and KNN [20]; unsupervised learning 
examples such as Principal Component Analysis (PCA) 
[21], and K-means [22]; Deep learning examples such as 
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Convolutional Neural Networks (CNNs) [23], and 
Recurrent Neural Networks (RNN) [24]. In the 
construction industry, the common experience of 
applying ML methods is that these models often fail 
when dealing with real-world problems. One possible 
reason is that computer engineers currently establish 
many ML methods, and they lack the knowledge and 
experience of the corresponding industry application 
scenarios, which leads to the existence of many errors 
and biases in the process of model building [7]. The 
challenges to the application of ML in the construction 
industry are threefold. Significant challenges are the lack 
of data, the accuracy of some ML algorithms, and the 
complexity of the site environment among others [8]. 
When dealing with these challenges, it is essential to note 
that it is not just about building predictive models when 
solving real-life construction problems. In addition to 
training reliable ML models, it is also necessary to 
consider how to integrate the experience and knowledge 
of construction industry experts into the model building 
process as a comprehensive framework [7].  

ML has created new opportunities for revealing, 
quantifying, and understanding labour productivity in the 
construction process. Determining the factors that affect 
the productivity of construction labour is often the first 
step in establishing research models. The performance of 
these models greatly depends on the input factors. Two 
research gaps need to be addressed urgently. One is the 
identification of comprehensive factors, and the other is 
the weight and relationship of these factors. In 
identifying the factors, some studies have not considered 
essential factors such as subjective factors related to the 
workforce (compatibility of personality). In determining 
the relation between the factors, many studies ignore the 
correlation between different types of productivity 
factors and only consider these as independent and 
isolated factors or they simplify the correlation between 
the factors [11-13]. Future models can obtain information 
from real data to export behaviour or data-rules, identify 
critical factors, and predict productivity performance. 
The more fundamental factors will play a more accurate 
role in forecasting productivity, which requires the model 
to first clarify the hierarchical relationship between the 
factors to develop sensible strategies to better predict 
labour productivity. By combining ML, construction site 
realities, and the builder’s understanding of actual 
engineering problems, new models can be developed to 
correctly represent construction scenarios.  

3. Case study 

To illustrate the application of ML in construction, let us 
consider a real-life masonry project in Atlanta, GA in the 
United States. The project consisted of two main 
buildings with an approximate area of 950,000 ft2. 

Building A was mixed used space for upscale 
commercial stores and residential apartments. Building C 
had only upscale commercial stores. Up until the first 
storey, the floor use for both buildings were identical as 
well as the masonry units used. The second underground 
floor was used for parking, the first underground was 
used for storage for commercial clients, and the first floor 
was for commercial stores. Building A had 12 more 
floors of residential apartments. A data set was collected 
during the construction phase of this project, and it was 
used to determine the relationships between factors and 
factors’ effects on task productivity. The reader is 
referred to [5] for an extended description of the factors. 

Determining the factors that affect productivity was 
the first step for establishing the ML models. Various 
construction studies have used external conditions 
(temperature, humidity, wind speed, precipitation) [27, 
28]); site conditions (floor level, work type, workload, 
complexity of task, congestion) [27,28,29]; and workers 
characteristics (age, experience, skill, crew size, 
personality [30, 31, 32], [26]). Note that there are 
numerous factors that affect productivity. When applying 
ML models, there is a game between being too narrow 
and too broad with the amount of information used to 
make predictions. If too narrow, some interrelationships 
might be lost and if being too broad the algorithms do not 
learn, and accuracy is low. In some cases, it seems that 
eliminating information might be more useful so that the 
levels of accuracy are acceptable, while allowing the 
models to learn from the information at hand. The best 
approach is often trial and error. 

Productivity refers to the measure of the full 
utilisation of inputs to achieve an expected output [2]. In 
the field, productivity is measured at the task level, for 
practical considerations. Since masonry is one of the 
most labour-intensive trades in construction, the task-
level model will be used in this study as single-factor 
productivity, which is expressed as the unit of work per 
labour hour [14]. To detail the factors three sections, 
namely, external conditions, site conditions, and workers 
characteristics describe typical attributes of masonry 
jobsites. 

 

3.1 External conditions 

The external conditions refer to the temperature 
regarding the building the crews were working at the 
specific time the data were collected. The temperature, 
both low and high temperature, was recorded for the day 
at the time the data were collected. 
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3.2 Conditions in masonry sites 

Extensive site observations and interviews with masonry 
practitioners [6] were used to collect information of 
typical site conditions related to crews and walls. The 
crew size is determined by the length of the wall. A rule 
of thumb used by masonry practitioners is one mason for 
every 15-20 ft of wall [6] and it varies on site (depending 
on wall lengths) between one to five masons. The 
masonry tasks (walls) were classified in three different 
levels, namely: easy (difficulty = 1), normal (difficulty = 
2), and difficult (difficulty = 3). This system considers 
crew sizes of one to five masons, but it was trained for 
two to three masons since it was the typical number of 
masons in this case study and dataset at hand. 

3.3 Workers’ characteristics 

Masons have different ages and length of experience in 
the field, which could have impact on their productivity 
together with other external factors and conditions in the 
construction sites.  The size of crews was annotated as it 
happened on site, which is typically determined by the 
superintendents. Compatibility between masons, defined 
as a measure of the capability of a group to interact and 
work well together to attain higher productivity [6], was 
collected through extensive site visits and interviews 
with masonry practitioners.  

3.4 Dataset 

The dataset of masonry work contains 1,977 data samples 
with 14 dimensions for training and prediction. Each of 
which includes the following features: low temperature 
of the day; high temperature of the day; level of difficulty 
of the masonry task; number of masons; compatibility of 
mason 1; compatibility (mason 1 & mason 2); 
compatibility (mason 1 & mason 3); compatibility 
(mason 2 & mason 3); age (mason 1,2&3); experience 
(mason 1,2&3). Productivity was measured by the 
number of blocks built in 5-minute time intervals. The 
dataset was divided into training and testing data sets and 
input data labelled by their corresponding productivity, 
which is measured by the number of blocks built per 
minute per mason. In the experiments, the level of 
productivity was classified as high ( ≥ 0.6 ), medium 
((0.2,0.6]), and low (< 0.2), considering that the average 
productivity of the whole data set is 0.433 and the 
standard deviation is 0.182. To ensure the input data was 
internally consistent, standardisation was implemented 
using Scikit-learn to pre-process the data. The dataset 
was balanced so that each class had approximately the 
same amount of data samples. To prevent the trained 
model from overfitting on certain classes while 
underfitting on other classes, enough duplication of the 
data in the minority classes were added to the dataset. 

Then, the dataset was shuffled and divided into training, 
validation and testing sets in the ratio 2400:700:711. 
Further details of data processing can be found in [5]. 

3.5 Experiments 

KNN [8] is a simple, supervised machine learning 
algorithm that can be used to solve both classification and 
regression problems. KNN classifier determines the class 
of a data point by majority voting principle. For example, 
if K is set to 5, the classes of 5 closest points are checked, 
and the prediction is done according to the majority class. 
To determine how close between the data points, 
Euclidean distance is one of the most used distance 
measurements. In this case, a KNN model where K = 10 
is built using the Scikit-learn library and achieved the 
classification accuracy of 97.5% with grid search method. 
Different values of K have been explored and when K = 
10, the model achieves the highest accuracy. The 
confusion matrix is plotted in Figure 1.  
 

 

Figure 1. Confusion matrix of KNN 

A logistic regression model is built using the Scikit-learn 
library and Liblinear [2] and achieved the classification 
accuracy of 85.2%. Logistic regression [3] is a statistical 
learning technique categorised in supervised machine 
learning methods for classification tasks. Logistic 
regression uses the sigmoid function 2, which takes any 
real value between zero and one. The logistic regression 
algorithm becomes a classification technique only when 
a decision threshold (default = 0.5) is brought into the 
picture. 

A DNN is a deep learning model that is focused on 
emulating the learning approach that humans use to gain 
certain types of knowledge. Like biological neurons, 
which are present in the brain, DNN also contains several 
artificial neurons, and uses them to identify and store 
information, then transform the input into classification 
or regression results. In the experiments, rectified linear 
unit (ReLU) was chosen as it is commonly used and has 
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a well-performing activation function. In the output layer, 
log softmax was chosen to predict the class of the 
productivity level. Cross entropy loss was selected as the 
loss function with a two-layer architecture (14-8-3), that 
is, there are 14 neurons in the input layer, 8 in the hidden 
layer and 3 in the output layer, and a three-layer 
architecture (14-10-5-3). Then, the trained model was 
tested on the testing dataset. The best classification 
accuracy obtained, after probing with different 
architectures was 97.5%. A Support vector machine 
(SVM) [26] is a machine learning technique to find a 
hyperplane in an N-dimensional space (N – the number 
of features) that distinctly classifies the data points. In 
this task, SVM classifiers with Sigmoid kernels as 
expressed by the formula stated in (1):  

 
𝐾(𝑋, 𝑌) = tanh(𝛾. 𝑋்𝑌 + 𝛾) (1) 

These were deployed to classify the level of productivity 
and the result, and the accuracy obtained was 95.8%. A 
Bayesian network is a type of the probabilistic graphical 
modelling technique that is used to compute uncertainties 
by using the concept of probability. Bayesian networks 
can take an observed event and forecast the likelihood 
that any of numerous known causes played a role. In this 
task, a Bayesian network was developed to classify the 
level of productivity and the accuracy obtained was 
81.2%. 

The confusion matrix is a performance measurement 
for ML classification problems to check the performance 
of a classification model on a set of test data for which 
the true values are known. The column represents the 
ground truth of the classification, and the row stands for 
the predicted classification results. The confusion matrix 
for logistic regression is shown in Figure 2. For instance, 
in the prediction of the “low productivity” tasks, the 
KNN model correctly classified 273 of the samples, 
while misclassified 45 of the “low productivity” as 
“medium productivity.” 

 

 

Figure 2. Confusion matrix of logistic regression 

The KNN model achieved the highest accuracy (97.5%) 
on predicting the level of productivity of the construction 
project (see Table 1).  

Table 1. Performance comparison of ML models 

ML model Classification 
accuracy 

F1  
Score 

DNN with 2 layers 92.6% 0.903 
DNN with 3 layers 88.2% 0.882 
KNN (k=10) 
KNN (k=100) 
Logistic regression 
Sigmoid SVM 
Bayesian Network 

97.5% 
81.4% 
85.2% 
95.8% 
81.2% 

0.986 
0.794 
0.802 
0.965 
0.761 

 
By predicting the level of productivity of the masons, the 
project manager can hence make decisions on how to 
group the masons based on their suitability and thus 
achieve maximum productivity and efficiency. 

By removing all compatibility features 
(compatibility of mason1, compatibility (mason1 & 
mason2), compatibility (mason1 & mason3), 
compatibility (mason2 & mason3), the necessity of the 
compatibility feature could be determined. The 
classification results on the dataset without compatibility 
features are shown in Table 2. As shown in Table 2, 
removing the compatibility features from the input 
dataset results in a slight degradation on the accuracy of 
the classification (97.4%). 

Table 2. Performance comparison of ML models 
(without compatibility) 

ML model Classification 
accuracy 

F1 Score 

DNN with 2 layers 91.9% 0.891 
DNN with 3 layers 89.8% 0.868 

KNN (k=10) 
KNN (k=100) 

Logistic regression 
Sigmoid SVM 

Bayesian Network 

97.4% 
81.5% 
85.4% 
96.0% 
83.6% 

0.981 
0.774 
0.865 
0.944 
0.802 

 
Figure 3 shows the feature importance graph for KNN 
(k=10). The features are in order: 0=low temperature, 
1=high temperature, 2= level of difficulty, 3=number of 
masons, 4= compatibility of mason1, 5= compatibility 
(mason1&mason2), 6= compatibility (mason1&mason3), 
7= compatibility (mason 2&mason3), 8= age (mason 1), 
9=age (mason 2), 10= age (mason 3), 11=experience 
(mason 1), 12= experience (mason 2), 13= experience 
(mason 3). As shown in Figure 3, the lowest temperature 
(feature 0) and highest temperature (feature 1) and the 
difficulty of the tasks (feature 2) have the greatest impact 
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on predicting the productivity. Additionally, it is shown 
that other factors such as the experience, crew size, and 
compatibility play a role in the prediction power of the 
model. 

The fact that the environmental conditions and 
difficulty of the task at hand prevail can be somehow 
explained by the fact that masonry is physically and 
labour intensive. Results also show that by removing 
compatibility gives mixed results regarding the 
prediction power of the model. Accuracy slightly 
improved in some cases (1-2%) and in other cases it was 
lower (1-2%). These results somehow show that 
compatibility might not impact productivity. However, a 
careful consideration in this study should be taken, as the 
measure for compatibility is largely subjective. In this 
case, there is no personality test and compatibility was 
determined via a subjective measure given by the 
foreman. While subjective, the foreman’s opinion was 
used because it is based on the long time and careful 
observations of the masons and crews, she/he has 
managed on site. To make the metric more precise, 
personality tests could be done similarly to this study [25].   

It might be appropriate to add here that the findings 
of this study contrast with [25] where it was found that 
personality compatibility does impact productivity and it 
has a positive correlation.  Perhaps this is because in this 
study the crews were working in larger walls that were 
often divided by construction joints so that the foreman 
on site could have a better control. In the previous study 
[25], crews were working in residential projects that have 
smaller walls and crews thus required more interactions 
between the masons. It is interesting to look closely at the 
feature importance (age and wall difficulty) and how it 
impacts productivity. A thorough analysis of these results 
suggest that looking at the age of the masons might be 
more important to form productive teams. Perhaps 
pairing a young mason with a more experienced mason 
is better than always pairing experienced masons [6]. An 
additional consideration might be considering experience 
and compatibility depending on the type of project as 
well. Compatibility might be a more important factor to 
consider when forming crews for residential projects and 
easy walls, while experience might be a more important 
factor to consider when forming crews for commercial 
projects and difficult walls. These of course require 
further investigations.  

Note that while the results might be different for 
other construction work, the methodology could be 
replicated in a similar way using ML and can be reused 
for projects that involve intensive labour works such as 
dry wall activities. Additionally, productivity measures 
vary depending on the type of work (structural consulting 
work might measure drawings per month). It might be 
interesting to normalise the productivity data in other 
activities to be able to compare with other type of works 

than those considered in this paper. As the definition of 
low or high productivity depends on the standard 
deviation, it will not depend on the type of work. By 
normalising it, it allows to classify compatibility as well 
and apply the methods of this study across different 
activities. 
 

 

Figure 3. KNN feature importance K=10 

4. Applications to optimization 

Our work, and in fact any work focused on classifying 
and predicting productivity, can in principle be used to 
increase productivity. A first approach would be the 
following. Assume that we have a pool of 𝑁 masons, 
from which we must select k crews of 
𝑛ଵ, 𝑛ଶ,𝑛ଷ, … , 𝑛 masons respectively. Then, we can form 
an exhaustive list of all possible teams of crews of the 
aforementioned sizes out of the total pool of masons. 
When 𝑁  and the 𝑛′𝑠  are small this is quite feasible. 
Indeed, if 𝑁 = 12, 𝑘 = 4 and 𝑛  = 3 for all 𝑗, the total 
number of teams made of four crews of three masons is 
given by: 
 

൫ଵଶ
ଷ

൯ ൫ଽ
ଷ
൯ ൫

ଷ
൯=369,600 

 
We measured the time taken by some of the algorithms 
we used, and once trained, the DNNs took around 0.2136 
seconds to classify 697 data samples; hence, for the 
hypothetical example introduced above, it would take 
around 2 minutes to find an optimum in a single machine. 
The reader must consider that if the accuracy is at 85% 
(which is what we have now), then the probability of 
obtaining an optimum via this approach in the case 
described above is about 0.52, the colloquial toss of a 
coin. One way of improving these numbers is to obtain 
accuracies of at least 98%: in this case we would have 
that the probability of obtaining an optimum from 
exhaustive evaluation is around 0.90. Is it possible to 
reach these accuracy levels? Theoretically speaking, the 
answer is yes. For instance, in the case of DNNs by the 
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Universal Approximation Theorem (of course trying to 
avoid overfitting) and training with more data, this could 
be achieved or perhaps considering other factors that 
affect productivity, but this might have to wait some time. 

Although the previous paragraph presents a simple, 
and perhaps obvious way of finding an optimum using 
classification methods in the case of larger N, say for 
instance 𝑁= 21, 𝑘 = 7 and 𝑛 = 3 for all 𝑗, an exhaustive 
approach becomes impracticable: in this case, the number 
of possible teams is 1.825×1014. In this case, even if it 
only takes 10-6 seconds to predict the productivity of a 
crew, doing an exhaustive evaluation of all possible 
teams would take around 50,000 hours (around 5 years). 
Besides, if the model requires a prediction of the weather, 
more than 24 hours is too much to run the optimisation 
procedure.  

Still, hope is not to be lost as something can be done. 
Assuming a high accuracy of prediction, we may proceed 
as follows: take a sample large enough but manageable 
and obtain an optimum from the sample. Using this 
approach (and to simplify our reasoning even further, 
assuming perfect accuracy), we can, for instance, if all 
we want is to get a team in the first decile of productivity, 
take a sample of 500 teams, and the probability of not 
obtaining a sample in the (real not estimated) first decile 
is 1.4×10-23, so it is quite probable, and we could even 
say almost certain, that the team with the best 
productivity in the sample is in the real first decile of 
productivity. This sampling procedure gives us in turn a 
way to estimate the 𝑖 − 𝑡ℎ decile of a distribution, and in 
this sense estimate the highest and lowest levels of 
productivity of the assembled teams. 

 

5. Limitations and conclusions 

The convergence of ML into the construction 
management domain provides the capability to learn the 
highly nonlinear, complex relationships between task 
characteristics, site conditions, and the characteristics of 
workers. This study leverages the power of ML and the 
existing wealth of real-life scenarios in construction 
projects to make productivity predictions. The 
experiments show moderate (logistic regression and 
Bayesian network) to very good (DNN with 2 layers, 
KNN with K=10 and SVM) accuracy when using ML 
models to classify and predict productivity with the data 
collected. The models were trained with only 1,700 data 
points. Given that the network is relatively small 
compared with the total number of data points, 700 data 
points were used to determine the accuracy. It is 
unknown if the network’s accuracy will improve with 
more data. Adding more perceptrons to the DNN can 
theoretically improve accuracy, but it must be done with 
care so that the size of the network is still small compared 

with the training data. If this can be successfully done, 
then this model can be used to plan a construction project 
to improve performance.  

This confirms the appreciation that ML methods can 
be used as decision-making tools in managing crews in 
building construction and its use deserves to be more 
widely known. This can reduce the reliance on empirical 
estimates and computationally expensive analytical 
evaluations and better estimate productivity of 
construction crews. If these classification algorithms can 
be paired with some optimisation strategies as proposed 
in this paper, this would also confirm the appreciation 
that ML methods can be used as decision-making tools in 
managing crews in building construction, and its use 
deserves to be more widely known. If simple strategies 
for evaluating the performance of teams (groups of crews) 
with classification algorithms (again, we suggest using 
probabilistic approaches as the number of teams can be 
huge for exhaustive methods), this can reduce the 
reliance on empirical estimates and computationally 
expensive analytical evaluations. 

There are some limitations of this study. Note that 
the models have not been validated yet, but we expect to 
do this in the future, hopefully with the support and 
collaboration from interested industry partners that could 
benefit from using the techniques developed in this study. 
Additionally, it would be interesting to run the 
experiments by removing factors to determine how much 
the accuracy is reduced by looking at the dynamics of the 
teams. For instance, determining if removing the size of 
the crews alongside compatibility impacts the 
performance of the models. These studies can also be 
refined using more productivity classes (in this study we 
used three). However, the amount of data at hand did not 
allow us to establish more refined productivity classes so 
that the algorithms would have reasonable accuracies. 
One of the challenges behind ML models is to obtain 
reliable data. We did run experiments with four classes 
of productivity (high, medium-high, medium-low and 
low) and obtained an accuracy of around 70%.  
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